The Theory of Numbers in Dedekind Rings
نویسنده
چکیده
This paper explores some foundational results of algebraic number theory. We focus on Dedekind rings and unique factorization of prime ideals, as well as some celebrated consequences such as a partial proof of Fermat’s last theorem due to Kummer, and the law of quadratic reciprocity.
منابع مشابه
ϕ-ALMOST DEDEKIND RINGS AND $\Phi$-ALMOST DEDEKIND MODULES
The purpose of this paper is to introduce some new classes of rings and modules that are closely related to the classes of almost Dedekind domains and almost Dedekind modules. We introduce the concepts of $\phi$-almost Dedekind rings and $\Phi$-almost Dedekind modules and study some properties of this classes. In this paper we get some equivalent conditions for $\phi$-almost Dedekind rings and ...
متن کاملA NEW PROOF OF THE PERSISTENCE PROPERTY FOR IDEALS IN DEDEKIND RINGS AND PR¨UFER DOMAINS
In this paper, by using elementary tools of commutative algebra,we prove the persistence property for two especial classes of rings. In fact, thispaper has two main sections. In the first main section, we let R be a Dedekindring and I be a proper ideal of R. We prove that if I1, . . . , In are non-zeroproper ideals of R, then Ass1(Ik11 . . . Iknn ) = Ass1(Ik11 ) [ · · · [ Ass1(Iknn )for all k1,...
متن کاملNotes on Algebraic Number Theory
1 Number Fields 2 1.1 Norm, Trace, and Discriminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Algebraic Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Dedekind Rings 7 2.1 Fractional Ideals and Unique Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 The Ideal Class Group ...
متن کاملGeneralizations of Dedekind domains and integer-valued polynomials
This talk will provide a snapshot of contemporary commutative algebra. In classical commutative algebra and algebraic number theory, the Dedekind domains are the most important class of rings. Modern commutative algebra studies numerous generalizations of the Dedekind domains in attempts to generalize results of algebraic number theory. This talk will introduce a few important generalizations o...
متن کاملMathematics 129, Spring 2009 Number Fields
1. Concerning These Notes 2 2. Introduction (First Day) 2 3. Algebraic Numbers and Integers 5 4. Linear Algebra for Number Theory 10 5. Review of Field Theory; Traces/Norms 10 6. Units: Some Notes Missing Here 16 7. Diophantine Approximation 16 8. The Trace Pairing 18 9. Linear Algebra and Discriminants 21 10. The Ring of Integers Inside the Number Field 26 11. Some Computational Aspects of Dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011